THE VECHANISN OF THE TSCHITSCHIBABIN PFACTIOH
R. A. Abramovitch, F. Helmer, \& J. G. Sahai Department of Chemisiry, Iniversity oi Saskatchcwer, Buskatoon, Canada.

## (Received 14 September 1964)

The amination of pyridire and its derivatives has gererelly been discussed in terms of an addition-elimiration mechanism via a o-conplex intermediate, but more recently the possibility that it, may proceed by a mechenism involving a 2,3 -pyridyne intermediute has been suggested (1). This latter proposal has been severely criticized and shown to be untenable as a general mechanism for the reaction though it might be applicable in one or two individual cascs (2-5;.

In spite of this, the pyridyne intermediate mecharism has been revived and bolstered by M. U. calculations in which the interesting suggestion has been made that the 2,3-delydropyridine may be stablized by interaction of the vacant $s p^{2}$ carbon orbitals with the $s p^{2}$ nybrid orbital containing the nitrogen lone-peir of electrons (6). This, it iss sail, would explain the lack of rormation of ury $3-a$ inopyridine derivatives (expected from the reaction of amile ion with a $2,3-p r i d y n e$ ) and the fact that $4-$ -aminopyridire is also not onteined (the latter sta*ement is incorrect since 4 -aminopyridirc hes beor reported to be formed under more vigorous conditions; Po accourt for substitutions at C-2 in 2-substituted pyridires it was postubated theit w 2,6-atydropyrijire intermedicte could be formed readily. Urfortunctely, this interesting proposil goes contriry to a number of alreudy published observitions un, to the present results.
rihus, the well-established amination oi 5-etryl-2-metiyl-and 2-metr-
yl-5-n-prc yylpyridine at $C-6$ (3, camnot ve e2nlained either by a 2,3- or by a 2,6-doryropyridime interme iate. On the basis of a pyriayne intermediate neahanism in which the hydrice ion clinination step is rate-ietermining one would expect a denterium isotope eifect in the reaction of pro idine-3d with sociamice: this was not ouserved (4). If, on the otier iand, it is the proton-sbtrection step wach is rate-ietermirins a chenge in the isomer ratio should have triren place when 3 -inofire- ${ }^{2}$ was used instead of 3 -picoline in the reaction with sodamide-agair, such was not the case (4). Fither of these as rate-ietermiring sters leainz to the jorm-

ation of a 2,6-dehydrorvridine sti bilized by lone-nair interaction is ruled out by the present observation thet when the reaction is carried ont with a pyridine-2a/pyridine mixture ant interrupted beiore compleion, the composition of recovered starting pyridine is uiccanged, whereas some eririchment in pyridine-2d would have heer expected on the asis of a ratedetermining proton, or hydride-ion, elimiration sten. It is also oi interest to note thit wher a 3-nalepyridie uraustituted st $C-4$ is treaied
 generated (\%), while the M. U. colculbtions including lone-xir irteraction predic: the the 2,3-yrigyne would be the ore stable intermedisle. The above cridence seems to rule ont the inmion on suct intermediates as a zenerel mecharsim For the bohitschibuing reaction.

mass-snectrosconic leuteritum analyses ani to the kain nal Research Council for a grant.

Hiplicinces

1. 2. S. Lcvitt und 3. W. Levitt, Cher. Ind. (London), 1621 (1963). 2. G. G. Eurrett and K. ochoifield, Chem. Ind. (London), 1980 (1963).

ミ. K. I. ChilAs arti A. W. Johnson, Chem. Ird. (London), 542 (1964).
. R. A. hbremoviteh, F. Felmer, \& J. F. Sahe, Chem. Ind. (London), 659 (175:.

6. H. L. Jones end D. L. Jeveridge, hetrcheron Letters, 1577 (1764).
7. M. J, pieterse and H. J. den Fertow, Hec. Ir.v. Chim., 80, 1376 (1761); M. J. Pieterse, Pin. D. inesis, Ansteracm University, 1962; W. Czuba, Hec. Mr:v. Cuisin, 22, 997 (1963).

